
Felipe Whitaker de Assumpção Mattos Tavares

Short term Wind Speed Scenario Generation
for Brazil with Improved Generative Adversarial

Networks

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Engenharia de Produção of PUC-Rio in partial fulfillment of
the requirements for the degree of Mestre em Engenharia de
Produção.

Advisor : Prof. Fernando Luiz Cyrino Oliveira
Co-advisor: Prof. Marley Maria Bernardes Rebuzzi Vellasco

Rio de Janeiro
September 2024

Felipe Whitaker de Assumpção Mattos Tavares

Short term Wind Speed Scenario Generation
for Brazil with Improved Generative Adversarial

Networks

Thesis presented to the Programa de Pós–graduação em En-
genharia de Produção da PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia de Produ-
ção. Approved by the Examination Committee:

Prof. Fernando Luiz Cyrino Oliveira
Advisor

Departamento de Engenharia Industrial – PUC-Rio

Prof. Marley Maria Bernardes Rebuzzi Vellasco
Co-advisor

Departamento de Engenharia Elétrica – PUC-Rio

Prof. Karla Tereza Figueiredo Leite
UERJ

Prof. José Francisco Moreira Pessanha
UERJ

Rio de Janeiro, September the 18th, 2024

All rights reserved.

Felipe Whitaker de Assumpção Mattos Tavares
Completed his Bachelor’s in Engenharia Industrial with minor
in Risk Analysis at Pontifical Catholic University of Rio de
Janeiro in 2022. Started his Master’s in Operations Research
in 2023, which introduced him to the electricity sector’s chal-
lenges. The University’s environment lead him to a research
project on the use of climate variables for energy demand pre-
diction, deepening his interest in the sector. Currently works
with software development for a renewable energy company.
Has experience with Software Engineering, specially regarding
data pipelines, from extraction to modeling.

Bibliographic data
Tavares, Felipe Whitaker de Assumpção Mattos

Short term Wind Speed Scenario Generation for Brazil
with Improved Generative Adversarial Networks / Felipe Whi-
taker de Assumpção Mattos Tavares; advisor: Fernando Luiz
Cyrino Oliveira; co-advisor: Marley Maria Bernardes Rebuzzi
Vellasco. – 2024.

57 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Industrial,
2024.

Inclui bibliografia

1. Engenharia Industrial – Teses. 2. Previsão de Velocidade
do Vento. 3. Modelagem Generativa. 4. Redes Neurais
Convolucionais. I. Cyrino Oliveira, Fernando Luiz. II. Vellasco,
Marley M. Bernardes Rebuzzi. III. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Engenharia
Industrial. IV. Título.

CDD:

... Depois sentir o arrepio
Do vento que a noite traz
E o diz-que-diz-que macio

Que brota dos coqueirais ...
Tarde em Itapoã,

Toquinho

To my advisors, for their guidance and faith;
to my friends and family, for their support and encouragement;

to those who, for lack of better a expression, are gone with the wind;
and for the luck I have to share life with them.

Acknowledgments

Thanks for the University’s exemption scholarship, and the Brazilian
National Council for Scientific and Technological Development (CNPq) under
Grants [number 130704/2023-7].

This study was financed in part by Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), Brasil - Finance Code 001.

Abstract

Tavares, Felipe Whitaker de Assumpção Mattos; Cyrino Oliveira,
Fernando Luiz (Advisor); Vellasco, Marley M. Bernardes Re-
buzzi (Co-Advisor). Short term Wind Speed Scenario Ge-
neration for Brazil with Improved Generative Adversarial
Networks. Rio de Janeiro, 2024. 57p. Dissertação de Mestrado
– Departamento de Engenharia Industrial, Pontifícia Universidade
Católica do Rio de Janeiro.

The variability of renewable energy sources, such as wind power, presents
a significant challenge for grid operators in maintaining operational stability.
This is specially true to the medium-term (from hours to days ahead), which is
both influenced by recent past data and broader trends and heavily influences
decision making. This research proposes a Convolutional Generator Network
conditioned on the previous step of u- (latitudinal) and v- (longitudinal) wind
speed components to generate wind speed scenarios using the Conditional
Generative Adversarial Networks training algorithm. The model is compared
to the state of the art in weather forecasting, Numerical Weather Prediction
Systems. The proposed generator model outperforms the benchmark for a forth
of the months in the test dataset when predicting over two weeks (28 12-hourly
steps) starting from a single data point with much lower computational cost,
less input data and similar long-term stability. Additionally, its forecasts are
statistically equal to the state-of-the-art in 71.97% of series.

Keywords
Wind Speed Forecast; Generative Modelling; Convolutional Neural

Networks.

Resumo

Tavares, Felipe Whitaker de Assumpção Mattos; Cyrino Oliveira,
Fernando Luiz; Vellasco, Marley M. Bernardes Rebuzzi. Geração
de Cenários de Velocidade do Vento no Curto Prazo no
Brasil com Redes Adversárias Generativas Melhoradas. Rio
de Janeiro, 2024. 57p. Dissertação de Mestrado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.

A variabilidade das fontes de energia renovável, como energia eólica,
apresenta um desafio significativo para o operador do sistema elétrico, em
especial para o médio prazo (de horas a dias à frente). Isos porque é um
período crítico para tomada de decisões do setor, sendo influenciado tanto
por dados recentes quanto por padrões mais amplos. O atual estudo propõe a
utilização de uma rede convolucional para gerar cenários para as componentes
u- (latitudinal) e v- (longitudinal) do vento, utilizando o algoritmo Redes
Adversárias Generativas Condicionais para treinamento. O modelo gerador
proposto foi comparado com o estado da arte para previsão meteorológica, um
sistema de previsão numérica. Os resultados mostram que o modelo - tendo
um custo computacional inferior, menos informações de entrada e estabilidade
de longo prazo similar - foi capaz de superar o benchmark em um quarto dos
meses do conjunto de teste na previsão de duas semanas à frente (28 passos
de 12 horas). Além disso, as medianas das séries geradas são estatisticamente
iguais às previstas pelo estado da arte em 71.97% dos casos.

Palavras-chave
Previsão de Velocidade do Vento; Modelagem Generativa; Redes Neurais

Convolucionais.

Table of contents

1 Introduction 12

2 Literature Review 14
2.1 Numerical Weather Prediction 18
2.2 Deep Learning 19
2.2.1 Background 19
2.2.2 Generative Adversarial Networks 21

3 Methodology 24
3.1 Data Normalization 24
3.2 Models 25
3.2.1 Deterministic 25
3.2.1.1 Date time Encoder 26
3.2.1.2 Training 27
3.2.2 Stochastic 27
3.2.2.1 Noise 28
3.2.2.2 Critic 28
3.2.2.3 Training 29
3.3 Benchmark 31
3.4 Evaluation 31
3.4.1 Mean Absolute Error 31
3.4.2 Continuous Ranked Probability Score 31
3.4.3 Diebold-Mariano test 32

4 Case Study 34
4.1 Gathering Data 34
4.1.1 Adjustments 36
4.1.2 General Characteristics 36
4.1.2.1 Time Patterns 37
4.1.2.2 Spatial Patterns 38
4.2 Results 40
4.2.1 Deterministic Model 41
4.2.2 Stochastic Model 42

5 Conclusions 48

6 Appendix A. Supplementary Material 57

List of figures

Figure 3.1 Methodology Overview 24
Figure 3.2 Visual Representation of the Deterministic Generator’s

Architecture 26
Figure 3.3 Visual Representation of Stochastic Generator’s Archi-

tecture 28
Figure 3.4 Visual representation of the Critic 29
Figure 3.5 CRPS visualization example 32

Figure 4.1 Northeast of Brazil Wind Farms with Wind Potential 34
Figure 4.2 Spatial resolution comparison 36
Figure 4.3 Temporal resolution comparison 36
Figure 4.4 Hourly spatial average of the components over the years 37
Figure 4.5 Spatial average of hourly components per season 37
Figure 4.6 Wind components’ auto-correlation on varying lags 38
Figure 4.7 Partial Autocorrelation of series 39
Figure 4.8 Correlation of wind speed with fixed series 40
Figure 4.9 Ocean Speed ACF 40
Figure 4.10 Land Speed ACF 40
Figure 4.11 Training metrics of the Deterministic Model 41
Figure 4.12 Validation of the model’s learning 41
Figure 4.13 Forecast comparison 42
Figure 4.14 WGAN training metrics 43
Figure 4.15 Untrained Critic’s Weights Distribution 44
Figure 4.16 Critic’s Weights Distribution 44
Figure 4.17 Distribution of Weights in the Noise Layers 44
Figure 4.18 Scenarios Comparison 45
Figure 4.19 Example of Generated Wind Scenarios 46
Figure 4.20 Speed Correlation boxplot comparison 46
Figure 4.21 CRPS over step 47

List of tables

Table 2.1 Related papers 14

Table 4.1 Example of the first five rows of data before processing 35
Table 4.2 Average of hMAE for 28 steps (two weeks) for all test

set months, per component. Values in bold are the lowest per
component. 42

Table 4.3 Average of CRPS for 28 steps (two weeks) for all test
set months, per component. Values in bold are the lowest per
component. 47

Table 4.4 Amount of months when the Diebold-Mariano’s test null
hypothesis is accepted (p-value ≥ 0.01) for components u- and v- 47

List of Abreviations

NN – Neural Networks
CNN – Convolutional NN
GAN – Generative Adversarial Networks
cGAN – Conditional GAN
WGAN – Wasserstein GAN
SN-GANs – Spectrally Normalized GANs

NWP – Numerical Weather Prediction Systems

1
Introduction

The growing prominence of renewable energy sources has created an
additional challenge to the grid operator: their variability. Wind power, for
example, has this challenge for all time scales: from seconds, for the turbine
control system; to minutes and weeks, for the integration of wind power in the
electrical grid [1].

One important characteristic in time-series forecasting is its horizon,
or how far in the future the model predicts. The medium-term wind speed
forecasting period, which ranges from a few hours up to two weeks, presents
an unique set of challenges. While short-term forecasts rely heavily on recent
past data [2]; long-term forecasts, or weeks to months ahead, are influenced by
broader trends, such as the El Niño–Southern Oscillation [3].

Therefore, the medium-term forecasting period is a delicate balance
between these two extremes, which is particularly important for the electrical
sector as it influences decision making [4, 5], specially if the forecasts accounts
for uncertainty [6, 7].

Another aspect of forecasting, connected to the horizon, is its frequency,
or step size. It is the time between consequent predictions, and can range from
seconds to hours or months, depending on the application. For computationally
heavy models, such as Numerical Weather Prediction (NWP) systems, the
frequency and spatial resolution must be chosen carefully to balance its forecast
value against cost.

Currently, these NWP systems are the state of the art of medium-term
weather prediction, but recent developments in machine learning (ML), namely
Deep Learning (DL), have rivaled its place by offering similar performance for
much lower computational inference cost [8, 9].

Advancements made in image recognition [10], for example, have been
applied to wind speed forecasting by treating its u- (longitudinal) and v-
(latitudinal) components over a gridded area as channels of an image [11]. This
perspective of predicting subsequent images over time is similar to the problem
of generating video, with two (u- and v- components) instead of three channels
(RGB). Additionally, advancements in generative learning [12, 13, 14, 15] can
also be applied to weather forecasting, enabling scenario generation with lower

computational cost.
The use of scenarios to deal with uncertainty is very common in the

electricity sector. In Brazil’s case, as it is common in other systems with
significant hydropower, the water’s future value is calculated and is at the
center of decision making. This process is done using an optimization tool
chain that takes into account variables such as precipitation and the different
scheduling horizons [16].

However, unlike water that can be stored for months, wind power
generation can vary rapidly due to changes in wind speed - which can not
be stored -, making the inclusion of its uncertainty in shorter term models
progressively more important. This is clear by wind power’s generation growth
between 2022 and 2023 of 13%, reaching 81.6 TWh: it already corresponds to
11.8% of the country’s total energy supply, following hydropower (58.0%) and
fossil fuels (15.7%) [17].

Different approaches to include wind’s uncertainty have been studied.
Maceira et al. [18], for example, adapts the current structure of energy
equivalence of hydropower reservoir to wind power for the medium-term model,
DECOMP [19]; which could also be expanded to include generation from other
sources such as wind and solar, potentially considering their correlations [20].

Nevertheless, there still lacks a method that includes scenarios while
considering wind speed’s spatial and temporal correlations with similar per-
formance and lower cost than NWP systems.

Therefore, considering recent advancements made in Machine Learning,
this work proposes the generation of wind speed and direction scenarios to
support the medium-term operation. This is done by training a fully convo-
lutional neural network to generate subsequent scenarios from the current,
one step at a time. The model is trained using data from the European Cen-
ter for Medium-Range Weather Forecast’s (ECMWF) most recent reanalysis,
ECMWF’s ReAnalysis 5 (ERA5). This general approach is then applied in
Brazil, considering three characteristics of the energy market: the growing in-
fluence of wind power; the trend of considering scenarios for shorter horizons;
and an Independent System Operator (ISO) that frequently deals with the
consideration of scenarios.

This work has been organized in the following chapters: Chapter 2
presents the theoretical background for wind speed forecast and scenario
generation; Chapter 3 gives context on recent developments in Deep Learning
with successful applications from other areas; Chapter 4 describes the input
variables and data sources; Chapter 4.2 presents the results found; and finally
Chapter 5 summarizes this work with final remarks.

13

2
Literature Review

Forecasting wind speed and direction has been the object of various
studies, many focused on its application for forecasting energy generation.
Table 2.1 offers an overview of existing works on wind speed forecasting
and scenario generation, organized in increasing order of expected model
complexity. There are a few takeaways from this table: most studies that
focus on short-term forecasts suffer from quick degradation of performance
over time; few studies have explored the wind speed’s spatial correlation; and
it is uncommon to consider scenarios, which are essential for planning and
decision-making.

Table 2.1: Related papers
Data Model Summary

N
ie

lse
n

et
al

.[
21

] - Proposes a model
called New Refer-
ence Persistence as
an update to the
Persistence (Naive)
model, modifying it
to approach the long
term average; there-
fore, extends indefi-
nitely

Although simple, it
is shown that it can
beat the state of the
art (NWP) for up to
4 hours [22]

Continues on next page

Table 2.1 – Continued from previous page
Data Model Summary

Er
de

m
an

d
Sh

i[
23

]
Wind speed [m/s]
and direction
[°] are collected
from sensors (with
anemometers and
wind direction)
placed in North
Dakota (USA) from
May 1st to October
21st, 2002; averag-
ing high frequency
values to hourly
frequency

Three approaches
were compared:
each wind speed
component was
modeled by an
ARMA process,
wind speed and
direction were each
modeled by another
ARMA, and a Vec-
tor auto-regressive
to forecast the tuple
of wind attributes;
all evaluated using
MAE

Because wind
speed and direc-
tion are slightly
correlated, Vector
auto-regressive
(VAR) model had
a higher forecasting
accuracy

Br
ow

n
et

al
.[

24
]

Sources sensor data
from Pacific North-
west, Goodnoe Hills
and Washington for
December 1981, av-
eraging it to hourly

Uses BIC to eval-
uate an autore-
gressive process.
Chooses an AR(2)
to make forecast
for up to 3 hours,
noting rapid perfor-
mance degradation
on scenarios

Forecasts wind
speed, taking
into account its
autocorrelation,
non-Gaussian distri-
bution and diurnal
nonstationarity;
later interpolates
it to the turbine’s
height to transform
into power using
the generator power
curve

Continues on next page

15

Table 2.1 – Continued from previous page
Data Model Summary

Pe
ss

an
ha

et
al

.[
25

]
Sources half-hourly
wind speed [m/s]
from NWP fore-
casts from Sintegre
for the days 8th
through 10th of
February 2021

Fits a Weibull
distribution using
Generalized Ad-
ditive Model for
location, scale and
shape (GAMLSS),
generating 2,000
scenarios for up to
72 hours

Generates wind
speed scenarios
(at 100m) for two
equivalent wind
farms (EWFs),
transforming it into
power using the
turbine power curve

Li
u

et
al

.[
26

]

Sources different
climate variables,
including wind
speed, from the
National Renewable
Energy Labora-
tory (NREL) for
304 wind turbines,
interpolating to a
grid.

Models - Per-
sistence, Lasso
Regression, Neural
Networks (Feed
Forward, LSTM,
CNN, STNN-VB),
Gaussian Processes
(GPR) and Hidden
Markov Chains -
were tested and
evaluated using
RMSE and CRPS
for up to 3 hours of
forecast horizon.

Spatial–Temporal
Neural Network
and Variational
Bayesian inference
(STNN-VB) has
the best perfor-
mance (14.1% lower
RMSE)

Continues on next page

16

Table 2.1 – Continued from previous page
Data Model Summary

Ba
st

os
et

al
.[

11
]

Two-hourly with
fixed spatial res-
olution (0.5° and
0.204°) datasets
for different areas
containing u- and
v-components of
wind, and tem-
perature from the
Climate Forecast
System Reanalysis
(CSFR) dataset
were sourced from
the Research Data
Archive (RDA).

Uses a two part
network - an UNet
[27] to extract
spatio-temporal
features; and a
CNN with a dense
network head to
map those features
to single sites - to
model 181 closely
related different
hourly series, with
prediction horizon
of up to 6 hours.

The results show
that adding cal-
endar variables
considerably im-
proves performance
of the models. It
suggests the use of
Recurrent Neural
Networks (RNNs)
to model such
sequential prob-
lem; and testing a
fully convolutional
model.

Ji
an

g
et

al
.[

28
]

Collects data from
NREL Wind In-
tegration Dataset,
which provides
power data for more
than 126.000 sites
in the United States
of America with 5
minutes temporal
resolution. Selects
wind farms in
Washington State
for its experiment.

Uses a convolution
model based on im-
age generation arti-
cles. It maps noise
z ∼ U[0, 1] sized
128 to a 24 by 24
grid, correspondent
to the series; and
uses the Improved
GAN [14] algorithm
for training.

Generates scenarios
for a number of
series, considering
cross correlation
due to the network
structure.

Continues on next page

17

Table 2.1 – Continued from previous page
Data Model Summary

La
m

et
al

.[
9]

Sources 39 years
(1979-2017) of
ERA5 weather
data.

Trains a Graph Neu-
ral Network forecast
hourly weather vari-
ables for over 10
days at 0.25° resolu-
tion globally to min-
imize MSE weighted
by vertical level.

Machine Learning-
based Weather
Prediction (MLWP)
are now competitive
with traditional
weather forecasting
methods. Addition-
ally, its method
also performed well
in severed event
forecasting.

The remainder of this chapter delves into various techniques applied to
weather forecasting: Section 2.1 briefly overviews Numerical Weather Predic-
tion (NWP) systems, which are the current state-of-the-art of weather fore-
casting; and Section 2.2 discusses Deep Learning developments.

2.1
Numerical Weather Prediction

Numerical Weather Prediction (NWP) systems rely on complex mathe-
matical models to simulate the behavior of the atmosphere and forecast future
weather conditions. The main difference between models is whether the at-
mosphere is simulated alongiside changes from the ocean (atmosphere-ocean
coupling). Its pipeline includes several key steps [29]:

1. Identifying sources of observational data and ensuring high quality;

2. Combining observations with model simulation to produce a best esti-
mate of the current weather situation, called data assimilation;

3. Convert the continuous atmosphere into a grid-based system for compu-
tational efficiency, named discretization in space and time;

4. Physical parametrization to represent atmospheric processes, such as
clouds, using simplified mathematical schemes, which are tested and
validated for accuracy;

5. Provide initial and boundary conditions of the atmosphere;

18

6. Post-process the model’s output to refine and produce usable weather
forecasts; and

7. Quantify the forecast uncertainty by running the simulation with slightly
different initial conditions, generating an ensemble of forecasts.

Although its performance has improved over the years due to improve-
ments in either: numerical techniques, model resolution or physical process
parametrization schemes; it comes at a high computational price [30]. This
brings attention to other methods, such as machine learning and recent deep
learning methods, for their flexibility and lower inference cost [8].

2.2
Deep Learning

Before considering Deep Learning applications in weather, this section
gives a brief description of its development and architectural breakthroughs.
For that, Section 2.2.1 describes Neural Networks and its parameter optimiza-
tion, followed by an explanation on Convolutional Neural Networks. Then, in
Section 2.2.2, Generative Adversarial Networks (GANs) [12] are presented and
discussed.

2.2.1
Background

Feed Forward Neural Networks are stacked learners - each layer use
the output representation from previous ones -, combined with non linear
functions, represented in Equation 2-1, which enables the modeling of arbitrary
transformations [31].

fω = σ(WN+1 · σ(WN · σ(. . .) + βN) + βN+1) (2-1)
Where Wi and βi are the weights and intercept of each layer i, respec-

tively. The non linear function is represented by σ. Each layer is a linear
combination of the previous layer’s output, Xi−1, or Wi · σ(Xi−1) + βi, which
is then fed forward to the next one.

This comes at the cost of not having an analytical solution, requiring
a flexible algorithm such as back propagation [32, 33], which minimizes the
model’s loss (L) by updating its weights (Wi, βi∀i) at each iteration step,
weighted by the learning rate (α). The update process of weights (Wi) for each
layer (i) is represented in Equation 2-2.

Ŵi = Wi − α · ∂L
∂Wi

= Wi − α · ∂L
∂Wi+1

· ∂Wi+1

∂Wi

(2-2)

19

Recent developments - namely computational power and data availability
- have enabled neural networks to become deeper (higher N , or more stacked
layers), baptized Deep Learning. Although this allows for more complex
pattern learning, the depth aspect makes training harder [34], as it introduces
two main problems: over fitting, as having more parameters augment the
network’s flexibility; and vanishing or exploding gradients, which make training
these networks very challenging.

Regarding over fitting, a possible solution is to use regularization. An
example is a technique called Dropout layers: a layer that “turns off” neurons
randomly with set probability (p), forcing the network to learn different useful
representations of the function, instead of leaning on few neurons [35], as
represented in Equation 2-3. In turn, Dropout layers can also be used to model
uncertainty: by using dropout during evaluation time, different neurons are
activated, resulting in different predictions [36].

Ii[z ≥ p] =

1, if zi ≥ p

0, if zi < p
, zi ∼ U(0, 1)

fω = σ(WN · IN [z ≥ p] · σ(XN−1) + βN) (2-3)

Where zi is an uniformly sampled vector with the same size as Wi, XN−1

is the output of the previous layer, and I[z ≥ p] is the indicator function,
assuming 1 if z ≥ p or 0 otherwise.

For the second problem, related to gradient propagation, a solution is
to use skip connections, which enables the network to progressively learn
more complex representations of the data [37], while also having the benefit of
smoothing the loss landscape [38], improving convergence.

Due to its flexibility, Neural Networks have been successfully applied to
various previously open problems. One such area that was revolutionized is
image recognition, which had a turning point after the development of large-
scale Convolutional Neural Networks (CNNs) [10]. These types of networks
take into account proximity information by sliding a filter over the input. This
filter enables the recognition of simple features, such as edges in an image; and
has been shown to be able to activate for more complex patterns, such as eyes
or faces, when enough filters are stacked [39]. Equation 2-4 shows the result
of sliding the filter, or kernel (matrix of learnable parameters), over the input
(original “image”); with no padding or dilatation, and a stride of one.

Result(0,1) = 2 · 0 + 3 · 1 + 6 · 1 + 7 · 0 = 9 (2-4)

20

Input Kernel Result
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

0 1
1 0

7 9 11
15 17 19
23 25 27

On top of being used for classification, convolutional neural networks

have been successfully applied to other problems, such as image segmentation,
or the recognition of what and where objects are in an image. A successful
approach for this problem is the UNet, which uses two techniques described
above: convolutional layers and skip connections [27].

2.2.2
Generative Adversarial Networks

While neural networks were developed as discriminative models for
regression or classification tasks, their learning flexibility has also been used
to learn data distributions. One of the most successful algorithms for this are
Generative Adversarial Networks (GANs).

GAN is an algorithm for training two competing networks: a Generator
(G), which learns the mapping between an arbitrary distribution, usually
Gaussian, to real data’s distribution; and a Discriminator (D), usually a binary
classifier, which learns to discriminate between true and generated examples
as accurately as possible [12, 15]. It was developed as a min-max optimization
problem between two models, represented by Equation 2-5; and each network’s
loss is shown in Equations 2-6 and 2-7.

minGmaxDV (D, G) = Ex∼px(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2-5)
LD = E[log D(x)] + E[log 1−D(G(z))] (2-6)
LG = E[log D(G(z))] (2-7)

Where x is the input, z ∼ N (0, 1) is the noise vector, and LD and LG

are the network’s respective losses.
While initially GANs were primarily used to generate random reasonable

instances of the true data, further developments were able to condition the
process to generate different examples of a similar instance. An example of
this process is the generation of MNIST images (28× 28 sized images of hand
written digits) given a label (y, e.g. y = 1), with very good results [13]. The
modified networks’ losses are represented in Equations 2-8 and 2-9. There is no
current consensus on the best way to condition the network, but it is known

21

that is should not introduce too much noise, nor feed an input that is too
close to the output; as the network might either not learn anything or simply
reproduce the condition, respectively.

LD = E[log D(x|y)] + E[log(1−D(G(z|y)))] (2-8)
LG = E[log D(G(z|y))] (2-9)

GAN’s training algorithm has an important caveat: the training process
is known to be very unstable. Initially, it was suggested to sparsely train the
Generator to improve stability, alternating between which model’s weights are
updated in each batch [12]. This was done because both a weak or a strong
Discriminator provide poor signal to the Generator. However, balancing the
networks and selecting the appropriate hyperparameters can be difficult.

Another suggestion to stabilize the networks’ training was progressively
growing the networks: both the Generator and Discriminator start training
from a lower resolution image and are progressively grown to the desired
resolution [40]. This idea has culminated in a two part Generator network
- mapping and synthesis - capable of separating high-level attributes (e.g.
pose when trained on human faces), which enables intuitive control for image
conditioning [41]. As promising as this idea was, it was later put aside in favor
of skip connections [42].

Another approach to improve training is to modify what the Discrimina-
tor is predicting: instead of a probability of true or fake, it could now output the
distance between true and estimated probability densities, namely the Earth
Mover distance. For this problem to be valid, it was shown that the Critic (Dis-
criminator’s new name) must be a 1-Lipschitz function (a function with norm
below 1), which, initially, was done by clipping its weights, which the authors
recognized strongly limited the Critic’s learning capability [14]. Although the
1-Lipschitz property is hard constraint, the Generator’s loss gains meaning (it
becomes the estimated distance between the true and learned distributions)
and guarantees convergence of the training process. Moreover, the better the
Critic is, the better signal is provided to the Generator, improving the learn-
ing process. This creates an incentive to train the Critic a few times (ncritic)
before providing a signal to the Generator. The updated loss functions for the
Critic (Discriminator) and Generator are Equations 2-10 and 2-11

22

LD = E[D(G(z)]− E[D(x)] (2-10)
LG = −E[D(G(z)] (2-11)

Different methods to approximate 1-Lipschitz property were suggested.
Lee and Seok [43] classifies them between regularization or normalization
methods. One such method is the inclusion of a gradient penalty (GP)
regularization in the critic loss function [44]. This has the benefit of allowing
the Critic to model more complex functions, which is an important limitation of
weight clipping method. The updated loss is represented in Equation 2-12. This
substitution improved the performance of the critic and the overall training
process. However, this requires one entire forward and backward propagation
to be calculated [45], increasing computational cost.

x̃ = α · x + (1− α) ·G(z), α ∼ U(0, 1)
LD = E[D(G(z))]− E[D(x)] + E[(∥∇x̃Dω∥2 − 1)2] (2-12)

Another alternative is to directly scale each the Critic’s weights to have
norm K = 1. This can be done by dividing each layer’s (i) weights by σ(W)i, as
in Equation 2-13. The scaler σ(W)i is approximated with an iterative heuristic
until reaching the desired value of K [45]. Although this could be expensive -
it is an iterative process taht may take time to converge -, good results were
achieved with as little as one iteration per back propagation update, which
reduces the impact on training computational cost [45]. A caveat on scaling
the weights is that it also limits back propagation, as weights’ norm become
limited. A suggestion to circumvent that is to increase the learning rate.

W̃SN = Wi

σ(W)i

(2-13)

Therefore, given the presented problem, previously applied methods and
recent developments; the following chapters, 3 and 4, present the methodology
and case study, respectively.

23

3
Methodology

This work proposes a fully convolutional neural network to generate
wind speed scenarios auto-regressively. It was inspired by Bastos et al. [11]’s
approach of treating wind speed’s components over an area as the channels
of an image. In other words, this work interprets wind speed’s u- and v-
components over a spatial grid (latitude and longitude), as a two channel
image, with dimensions (components, latitude, longitude) instead of (channel,
height, width).

Figure 3.1 presents an overview of how this Chapter is organized: Section
3.1 introduces how data is preprocessed for the model; Section 3.2 describes the
deterministic and stochastic approaches, their architectures, parts and training
algorithms; finally Section 3.3 determines the benchmark used and 3.4 contains
the evaluation process used.

Figure 3.1: Methodology Overview

3.1
Data Normalization

The data is divided in three sets: train, validation and test; keeping
years complete (always from January through December). After the split, each
combination of latitude (h) and longitude (w) (borrowed from image generation

literature as height h and width w) is normalized following the approach below,
estimated sequentially from the train set.

1. First, the data is scaled between [0, 1] in a MinMax fashion; then

2. The data is Rescaled to the interval [-1, 1].

The combination of these steps is summarized in Equation 3-1. They
are described above separately to mirror the implementation, which has them
separate for testing purposes. This strategy was chosen since it keeps the data’s
distribution and expected signal: for the u-component, east to west is positive,
while west to east is negative.

ŷh,w = 2 · yh,w −mh,w

Mh,w −mh,w
− 1 (3-1)

Where ŷh,m
t and yh,m

t correspond to the transformed and original values,
respectively; while Mh,w is the maximum and mh,w the minimum at location
(h, w).

Finally, the inverse transformation is used to transform the model’s
prediction to the original variable domain.

3.2
Models

Considering how unstable and costly the GAN training algorithm is,
this work first trains a deterministic generator in order to set the architecture
and hyperparameters, and then develops upon it to generate scenarios. This
is reflected in how this section is organized: first, sub Section 3.2.1 contains
the deterministic model, its parts and training algorithm; then sub Section
3.2.2 describes the Generator and Critic, noise injection and adapted GAN
algorithm.

3.2.1
Deterministic

The deterministic Generator’s architecture is represented in Figure 3.2.
For input, the Generator receives: date and time information, passed through
the encoder described in Section 3.2.1.1; and (u, v)(h,w)

t . After processing date
and time information and concatenating the inputs on the channel dimension,
its result - both components alongside hour and month channels - is fed into
an UNet [27] to predict (u, v)(h,w)

t+1 . During evaluation, this prediction is fed
back to the model with an update to the date and time feature, forecasting
the horizon auto-regressively.

25

Figure 3.2: Visual Representation of the Deterministic Generator’s Architec-
ture

The model contains two parts: an encoder for date and time information,
described in Section 3.2.1.1, and an UNet [27]. This combination was chosen
because it has shown good performance previously [11]. Moreover, skip con-
nections was shown to provide potentially higher performance [42], on top of
requiring less logic to implement, than the alternative of progressively expand-
ing the network [40].

Moreover, the activation function chosen was the hyperbolic tangent since
it has been previously applied in weather prediction [46]. An important note is
that the input is directly added to the output, making the model predict the
first difference of the series [9].

3.2.1.1
Date time Encoder

In order to enable the networks to learn date and time related pat-
terns, the network receives epoch seconds (dt), which is transformed linearly
to {H, M} ∈ [0, 1]2 interval representing hour (H) and month (M). The im-
plementation uses integer arithmetic (mod and floor operators) to extract the
hour (H) and month (M), dividing it by the maximum value (24 and 12,
respectively), resulting in values in the chosen range. For example, date 2012-
03-04 04:00:00 is transformed into H = 4

24 = 1
6 and M = 3

12 = 1
4 .

Having the values for H and M (for the given time step τ), two matrices
are built to have the same dimensions as (u, v)(h,w)

t , and are concatenated as a
channel, becoming a tensor like (u, v, H, M)(h,w)

t .

26

3.2.1.2
Training

The Algorithm 1 is used to train the deterministic model. Overall, it
iterates over batches of examples and learns to minimize MSE using back
propagation [33].

Algorithm 1: Let Deterministic Generator (G) parameters be θ.
Let wind components (u, v)(h,w)

t be shortened to yt, where height
h and width w are latitude and longitude, respectively; t be the
current time step, T be the prediction horizon, ατ = 1

T
the loss

weight for each step.
Hyperparameters:
batch size m = 64, Niter = 100, T = 4; learning rate: ∇θ = 10−4 [44],
Adam’s β1 = 0.0, β2 = 0.9 [44],
Data:
wind components yt are normalized, yt ∈ [−1, 1](h,w)

datetime dt ∈ N in seconds
horizon T as the amount of steps to be optimized for

1 for Niter training iterations do
/* optimize through horizon T */

2 for τ = 0, . . . , T do
3 ŷt+τ+1 ← Gθ(dt, yt+τ)
4 LMSE ← E

[
(yt+τ+1 − ŷt+τ+1)2

]
5 Lτ

Gθ
← LMSE

6 end
7 LGθ

← ΣT
τ=0ατLτ

Gθ

/* Update the model’s weights */
8 θ ← θ −∇θAdam(LCθ

, θ, β1, β2)
9 end

3.2.2
Stochastic

Having found a good combination of hyper parameters, the deterministic
model’s UNet is modified to include a Noise layer, described in Section
3.2.2.1, after every layer of the expanding path, as shown in Figure 3.3.
The motivation behind this is to first extract features (contracting path)
and then generate a scenario (expanding path), similar to Karras et al. [41].
Importantly, the stochastic model is trained from scratch: the weights learned
in the deterministic flow are not used.

27

Figure 3.3: Visual Representation of Stochastic Generator’s Architecture

3.2.2.1
Noise

To generate scenarios, the proposed model depends on receiving noise.
This is done using a layer with a per channel parameter with the same shape as
its channel input [41], as shown in Equation 3-2. The weights are initialized as
zeros and are learned during training. This eliminates the need for specifying
the size of the noise vector, as there is no conclusive evidence on its impact on
the model [47].

c
(h,w)
i = (ci + wi · z)(h,w) ∀i ∈ channels; wi ∈ R, z(h,w) ∼ N (0, 1) (3-2)

Where: (u, v)(h,w) and (û, v̂)(h,w) are the input and output of this layer,
respectively; wc is the layer’s weights for each component (c ∈ {u, v}); and
z(h,w) is “per pixel” white noise.

3.2.2.2
Critic

The Critic’s role is to discern between true and fake data instances,
providing signal for the generator to learn the data distribution. To ease
implementation, Radford et al. [48]’s work was used as inspiration. It features
a fully convolutional network that receives either real or fake input, alongside
with the related condition, and outputs a classification for real or fake. Its
visual representation can be observed in Figure 3.4. Considering the differences
to this work’s context, a few adaptations were made:

28

Figure 3.4: Visual representation of the Critic

– Each component is processed separately since it has empirically helped
stabilize training; and

– Taking into consideration the training algorithm described in Section
3.2.2.3:

– The Critic is updated ncritic times per batch, restricting the use
of Batch Normalization. To substitute it, Instance Normalization is
used;

– DCGAN’s Critic last activation function (sigmoid) [48] was removed
and not replaced, since the algorithm transforms the classification
problem into a regression one.

3.2.2.3
Training

Considering the developments explored in chapter 2, the Improved GAN
algorithm [14] was chosen for its more stable training and interpretable loss
function. A Mean Squared Error (MSE) was included in the Generator’s loss
function to improve learning. In order to adhere to the 1-Lipschitz restriction,
Critic’s weights are spectrally normalized [45]. Finally, the models are trained
over an horizon T , equally averaging the losses [49].

The inputs for both networks are: the current step (u, v)(h,w)
t ∈ [−1, 1]h,w

wind components at time t with coordinates (h, w), and date and time variable
dt (in seconds) as inputs.

The training flow is shown in Algorithm 2.

29

Algorithm 2: Proposed algorithm, following WGAN [14] and SN-
GAN [45]. Let Critic (D) and Generator (G) parameters be ω

and θ. Let wind components (u, v)(h,w)
t be shortened to yt, where

height h and width w are latitude and longitude, respectively;
T = min(1, ⌊ epoch

10 ⌋) be the prediction horizon, ατ = 1
T

the loss
weight for each step; γi the Generator’s loss interpolation scalar
use for the to the ith epoch.

Hyperparameters:
batch size m = 64, Niter = 200, Ncritic = 5, T = 4; learning rate:
∇ω = 10−3 and ∇θ = 10−4, Adam’s β1 = 0.0, β2 = 0.9, γi = 1

3

Data:
wind components yt are normalized, yt ∈ [−1, 1](h,w)

datetime dt ∈ N in seconds
horizon T as the amount of steps to be optimized for

1 for Niter training iterations do
/* train Critic */

2 for i = 1, . . . , Ncritic do
/* optimize through horizon T */

3 for τ = 0, . . . , T do
/* generate next step with true previous step */

4 ŷt+τ+1 ← Gθ(dt, yt+τ)
/* calculate fake loss */

5 Lτ
ŵ ← E

[
Dω(dtt+τ , yt+τ , ŷt+τ+1)

]
/* calculate real loss */

6 Lτ
w ← E

[
Dω(dtt+τ , yt+τ , yt+τ+1)

]
/* calculate total critic’s loss */

7 Lτ
Dω
← Lτ

ŵ − Lτ
w

8 end
9 LDω ← ΣT

τ=0ατLτ
Dω

10 ω ← ω −∇ωAdam(LDω , ω, β1, β2)
/* normalize Critic’s weights */

11 ω ← ω
σ(ω)i

12 end
/* train Generator */

13 for τ = 0, . . . , T do
/* generate next step with true previous step */

14 ŷt+τ+1 ← Gθ(dt, yt+τ)
/* approximate the distance between learned and

true distributions */

15 LGAN ← E
[
Dω(dtt+τ , yt+τ , ŷt+τ+1)

]
16 LMSE ← E

[
(yt+τ+1 − ŷt+τ+1)2

]
17 Lτ

Gθ
← −γi · LGAN + (1− γi) · LMSE

18 end
19 LGθ

← ΣT
τ=0ατLτ

Gθ

20 θ ← θ −∇θAdam(LCθ
, θ, β1, β2)

21 end 30

3.3
Benchmark

For the medium-term range, NWP systems are the state of the art.
Therefore, it is used to benchmark our proposal.

3.4
Evaluation

Evaluation metrics allow direct comparison between models, enabling
forecasters to choose the best model given a metric. Sections 3.4.1 and 3.4.2
present metrics related to deterministic and stochastic forecasts, respectively;
while Section 3.4.3 describes the statistical test used to confront whether the
forecast generated by our proposal is significantly different or not from the
benchmark.

3.4.1
Mean Absolute Error

For point forecasting, models are usually evaluated by their Mean Ab-
solute Error (MAE) or Mean Squared Error (MSE) [1]. Neither take into ac-
count multi-step prediction. In order to consider the prediction horizon, the
arithmetic average of MAE is taken, named or horizon Mean Absolute Error
(hMAE), described in Equation 3-3. Moreover, it is tracked of model learning
during training, since it is simpler to calculate over batches.

hMAE = 1
(T ·#h ·#w)

T∑
i=0

∑
∀h,w

|yh,w
i − ŷh,w

i | (3-3)

Where T is the forecast horizon, h and w are the latitudes and longitudes,
and yh,w

i and ŷh,w
i are the true and predicted value, respectively.

3.4.2
Continuous Ranked Probability Score

In contrast to point forecasting, the evaluation of probabilistic forecasts
should take into account the uncertainty information provided in the predic-
tion.

This can be done by measuring the average distance between the cumu-
lative distribution function (CDF) of the forecast and the observation, which
can be interpreted as the expected value of the absolute error (MAE) between
a random drawn sample from the forecast distribution and the observation.
This metric is called Continuous Ranked Probability Score (CRPS).

CRPS(F) =
∫ ∞

−∞
(Ff (y)− Fo(y))2dy (3-4)

31

F is the cumulative distribution associated with:

– the forecast, f ; and
– the empirical observation, o.

As an example, consider a probabilistic forecast of a normal distribution
with mean 0 and standard deviation 1, and an observation of 0.5.

On another hand, considering its probabilistic nature, the CRPS of a
normal distribution returns a value of 0.234. This means that the average
absolute error of the forecast is 0.234 units. On one hand, if the forecast’s
probabilistic nature is not considered, one can take its average (E[N (0, 1)] = 0)
and calculate its MAE (=|y − ŷ|=|0 − 0.5|= 0.5), which is equivalent to the
CRPS of a point prediction. Both are represented in Figure 3.5, respectively.

Figure 3.5: CRPS visualization example

Finally, since this work proposes multi-step forecasts, the same adapta-
tion done for hMAE is done for CRPS: after calculating CRPS for each step
τ , they are averaged, hCRPS = 1

T
ΣT

τ CRPSτ .

3.4.3
Diebold-Mariano test

In addition to directly comparing forecasts, it is important to understand
whether these differences are statistically significant. A solution for this
problem was proposed by Diebold and Mariano [50] (apud [51]) and later
improved [52] (apud [51]). The Diebold-Mariano test steps are described in
the following equations, as implemented by Hyndman and Khandakar [51]. Its
null hypothesis is that both methods have the same forecasting accuracy.

1. calculate both methods’, f and g, residuals
ei = yi − fi ri = yi − gi ∀i ∈ [1, n]

32

2. define di given a measure, such as MSE, which is commonly used. It is
important to note that the test assumes di is stationary

di = e2
i − r2

i

3. consider the autocorrelation γk at lag k, for n > k ≥ 1

γk = 1
n

n∑
i=k+1

(di − d̄) · (di−k − d̄) d̄ = 1
n

n∑
i=1

di

4. for h ≥ 1, the test’s horizon parameter, define Diebold-Mariano statistic.
wk = 1∀k . Under the assumption that µ = 0, DM follows a standard normal
distribution

DM = d̄√
(γ0 + 2 ·∑τ−1

k=1 wk · γk)/n
∼ N (0, 1)

5. since the Diebold-Mariano test tends to reject the null hypothesis for small
samples, Harvey et al. [52] proposed the following modification

HLN = DM ·
√

(n + 1− 2 · τ + τ · (T − 1)/n ∼ tn−1

Where y is the ground truth. The forecasts from model A and B are
f and g, respectively. The forecast size is n and τ is the forecast prediction
horizon (as in, how many steps ahead does the model predicts, yt+τ).

A caveat for the presented test is that, since the autocorrelation γk can
be negative, the square root in DM ’s denominator can fail to be calculated.
In such cases, Bartlett’s weights (wk = 1− k

n
) are used [50] (apud [51]).

Finally, since the proposed model forecasts one step at a time, parameter
horizon τ is set to 1.

33

4
Case Study

This chapter presents a case study done for a delimited square in Brazil’s
northeast, chosen as it contains high wind potential and many of Brazil’s wind
farms - both built (yellow) and planned (blue) -, as depicted in Figure 4.1.

Figure 4.1: Northeast of Brazil Wind Farms with Wind Potential

Source: Empresa de Pesquisa Energética’s Webmap

The rest of this chapter contains an overview about data used, Section
4.1; and results from applying the proposed methodology, Section 4.2.

4.1
Gathering Data

This study utilizes the u- (longitudinal) and v-components (latitudinal)
of wind speed generated by Numerical Weather Prediction Systems (NWP, see
Section 2.1) obtained from the Climate Data Store (CDS), an online repository
for weather data. Specifically, two datasets were sourced, and are described
below. Both are located in the northeast region of Brazil. Their coordinates
are (-4.0, -39.0, -9.0, -34.0) for north, west, east and south, respectively; at the
same pressure level, 1000 hPa, or approximately 100 meters above sea level,
corresponding to the typical height for a wind turbine.

The datasets characteristics are described below:

– Reanalysis Data: contains hourly wind speed data at 0.25 degrees of
spatial resolution (≈ 25km original resolution) from the fifth European
Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis
(ERA5) [53]. In total 13 years of data were used: from 2011 to 2023 (10
years for training, 2 for validation and 1 for test); and

– Forecast Data: has 12-hourly temporal resolution and 1 degree spatial
resolution and was sourced from ECMWF’s Seasonal Forecast [54]. To
account for uncertainties - for example, related to the initial conditions -,
a number of members (scenarios) are available (in this case, 50 members).

Although they have different spatial and temporal resolution - Forecast
has a much lower temporal and spatial resolution, mostly due to the compu-
tational cost of NWP systems [30] -, the comparison between them is valid
since both come from the same institute and use similar, if not the same, data
pipeline.

ECMWF’s data was chosen because of its easy access combined to being
the best suited data for wind modeling [55]. An important note is that,
although reanalysis data are not observational measurements, it represents
the true phenomenon, even in Brazil [56].

To further illustrate the data being used, Table 4.1 contains a data
sample, and each row is referenced as (u, v)(h,w)

t . For example, (u, v)(−4,−39)
τ =

(−2.67,−0.46) at τ = 2020-01-01 00:00:00.

Table 4.1: Example of the first five rows of data before processing
latitude longitude time u v

-4.0 -39.0

2011-01-01 00:00:00 -2.6660004 -0.45802307
2011-01-01 01:00:00 -2.4021454 -0.21806335
2011-01-01 02:00:00 -2.1911316 -0.009429932
2011-01-01 03:00:00 -2.0295563 0.098861694
2011-01-01 04:00:00 -1.817688 0.097579956

The rest of this chapter is divided as: the adjustments needed to match
Forecast with Reanalysis, in Section 4.1.1; and an exploratory analysis over
Reanalysis data, under Section 4.1.2.

35

4.1.1
Adjustments

Before exploring patterns in the data, the difference in spatial and time
resolutions between Reanalysis and Forecast must be handled. Figure 4.2 has
a colored dot at all the locations the have a series: it is clear that the Forecast
set has a much lower spatial resolution than Reanalysis. Moreover, Figure
4.3 compares Forecast’s members (scenarios) as orange dots with the higher
frequency Reanalysis data in blue.

Figure 4.2: Spatial resolution compar-
ison

Figure 4.3: Temporal resolution com-
parison

This work chose to filter Reanalysis to match Forecast’s resolution, in
order to enable comparison and evaluation this work’s methodlogy - on top of
reducing the computational cost. This choice must be kept in mind, since: it is
not a limitation from the proposed methodology; and benefits the benchmark
model, since Forecast was not restricted to the chosen area when it was
produced.

4.1.2
General Characteristics

The data used in this work possesses a multi-dimensional structure
with four indexes: component (either u or v), latitude, longitude and time.
This complexity makes it challenging to visualize the data in a single image.
To overcome this limitation, separate images are presented to show either
temporal or spatial patterns, while maintaining the other dimension fixed.

One strategy for keeping the spatial dimension fixed is to calculate its
spatial average, represented in Equation 4-1, and visualizing it over time.

(ū, v̄) = 1
#h ·#w

Σh,w
i,j (u, v)i,j

t (4-1)

36

4.1.2.1
Time Patterns

As the representation of a physical phenomenon, wind speed is expected
to exhibit a consistent average value. This is made evident in Figure 4.4, which
displays the spatial average of hourly wind speed with a 4-week moving average.
The figure also illustrates a clear seasonality pattern, with higher wind speed
during late autumn and winter and lower during summer.

Figure 4.4: Hourly spatial average of
the components over the years

Figure 4.5: Spatial average of hourly
components per season

The seasonal variation in wind speed becomes more apparent in Figure
4.5, which displays the spatial average of hourly wind speed for each season.
The (southern hemisphere) seasons are named after the initial letter of their
respective months: DJF (December, January and February) corresponds to
summer, MAM (March, April and May) to autumn, JJA (June, July and
August) to winter, and SON (September, October and November) to spring.
The figure reveals that each season has a distinct bias, with spring (SON)
having higher (more negative) u-component values and winter (JJA) with
higher v-component values.

Figure 4.6 displays the Pearson autocorrelation, Equation 4-2, of each
component on the map given a lag. This representation illustrates the temporal
dependence, which slowly decays over time, becoming zero or even negative
after 12 hours, and then becoming strongly correlated again on the next day
(after 24h).

37

ρ(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)
σxσy

(4-2)

ϕh,w = ρ(yh,w
t , yh,w

t−τ) (4-3)
∀ y ∈ {u, v}

∀ τ ∈ {1, 4, 12, 24},
∀ h ∈ [−9,−4],
∀ w ∈ [−39,−34]

Figure 4.6: Wind components’ auto-correlation on varying lags

The time dependence and correlation with the previous day is even more
pronounced in Figure 4.7, which presents the speed autocorrelation all series
over hourly lags. This type of plot usually considers a single series and is
presented as an histogram; however, to allow patterns from all series to be
visible, this Figure showcases the autocorrelation distribution over the lags.
The magnitude of the wind speed (ω) was calculated with the Pythagorean
theorem, Equation 4-4. Notice that it decays differently for each series, but
clusters back together after 24 hours.

ωh,w
t = (u2

h,w + v2
h,w) 1

2 (4-4)

4.1.2.2
Spatial Patterns

In addition to seasonality, wind speed patterns also vary based on the
location of the series. To illustrate this, the calculated speed was separated in
two groups: ocean and land. Then, the Pearson correlation, Equation 4-2, was

38

Figure 4.7: Partial Autocorrelation of series

calculated for all series in comparison to a fixed lagged series represented by
the blue dot, one on the ocean and another on land, represented in Equations
4-5. Its result is shown in Figure 4.8, which highlights that the autocorrelation
statistic is higher for series that are spatially closer to the reference series, with
a faster decay observed for land compared to ocean, observable for 4-hour lag.
Furthermore, the 24-hour lag (day before) autocorrelation is higher for land
than it is for the ocean.

ϕh,w = ρ(ωh,w
t , ωP

t−τ) (4-5)
∀ P ∈ {(−35,−4), (−37,−7)}
∀ τ ∈ {1, 4, 12, 24},
∀ h ∈ [−9,−4],
∀ w ∈ [−39,−34]

Another perspective on the spatial dependence is displayed in Figures
4.9 and 4.10. It contains the same data as Figure 4.8, but shown over time
instead of on the map. The proximity - measured using Chebyshev distance,
Equation 4-6, a natural distance metric considering that convolutions are used
in the model - strongly influences the series’ decay, and its overall pattern.
These figures expose how much more pronounced the pattern against the land
series is in comparison to the ocean’s.

DChebyshev(yh,w, yP) = max
c
{|h− Ph|, |w − Pw|} (4-6)

39

Figure 4.8: Correlation of wind speed with fixed series

Figure 4.9: Ocean Speed ACF Figure 4.10: Land Speed ACF

4.2
Results

This chapter presents the results obtained with the proposed methodol-
ogy. It is organized as follows: Section 4.2.1 presents the deterministic model’s
results; and Section 4.2.2 presents the results considering scenario generation.

For each section, the training metrics are presented. Then, a specific
location was chosen to visualize and validate whether the model has learned
patterns present in the series. Finally, the evaluation described in Section 3.4
is used to compare the proposal and benchmark.

Before presenting the results, it is important to highlight the differences
between the proposal and the current state of the art in weather forecast-
ing. The first difference relates to the computational cost: while Numerical
Weather Prediction (NWP) systems solve differential equations, requiring su-
percomputers and expertise; the proposed method is restricted to learning all
patterns from data and was run using consumer graded hardware. Therefore,

40

while the spatial and temporal resolutions are restrictions from the bench-
mark, the methodology proposed can be applied on coarser resolution data -
higher spatial and time resolutions. Besides, the results shown are not com-
pletely fair with our model: it was trained with data restricted to the chosen
area, while the benchmark outputs were generated alongside and with access
to other weather variables from entire world.

4.2.1
Deterministic Model

Figure 4.11 presents the training and validation loss curves for the model,
alongside the hMAE, presented in Section 3.4, for both sets. Moreover, Figure
4.12 validates that the model has learned the data’s distribution by comparing
its predictions for an arbitrary month from the validation set to the same
months from the training years and their average. It is interesting to note
that, not only the model learned the 12-hourly pattern, but it seems to predict
the long term average after a couple of steps, an improvement that has been
previously suggested [21].

Figure 4.11: Training metrics of the
Deterministic Model

Figure 4.12: Validation of the model’s
learning

An example of the model’s forecast is depicted in Figure 4.13. It is clear
that, while both model forecasts and NWP’s median correctly capture the true
data’s patterns, the model’s forecasts could be improved. Still, neither come
close to following the original hourly dataset variability, represented by the
light black line.

Finally, Table 4.2 compares the deterministic model with the benchmark.
Since the former does not learn the data’s distribution, it is compared to
the median of the latter’s scenarios. While the benchmark’s median performs
better than the deterministic model, it is important to reiterate that it has

41

Figure 4.13: Forecast comparison

a much higher computational cost and access to more information than what
was used in our model.

Table 4.2: Average of hMAE for 28 steps (two weeks) for all test set months,
per component. Values in bold are the lowest per component.

Generator median(NWP)
month u v u v
JAN 0.926 0.895 0.783 1.075
FEV 0.900 0.963 0.969 1.02
MAR 0.951 0.971 0.978 1.167
APR 1.292 1.006 1.000 0.922
MAY 1.015 1.537 0.914 1.300
JUN 0.865 1.1 0.872 0.942
JUL 0.944 1.768 0.882 1.316
AUG 0.891 1.136 0.916 1.131
SET 0.98 1.929 0.959 0.871
OCT 0.812 1.109 0.804 0.993
NOV 0.760 1.491 0.826 1.058
DEZ 0.726 1.149 0.797 1.091

4.2.2
Stochastic Model

Having validated the architecture, the the Generator and Critic were
trained. The following results were calculated using 100 members (scenarios),
double the scenarios available from the benchmark (50). This allows for a

42

better estimation of the evaluation metric without requiring more memory
than available.

Figure 4.14 presents four plots: top left contains the Generator’s losses:
the train loss is blue, while orange is the weighted average between MSE (green,
val mse, 1 − γ = 2

3) and Critic’s signal (red, val adversarial, γ = 1
3) - scaled

along y axes; the top right presents the Critic’s loss (with inverted y scale,
since the Critic’s game is to maximize the Generator’s loss), for both training
(blue) and validation (orange); bottom left shows the hMAE; and bottom right
keeps track of the Critic’s norm, which reaches and stays close to 1 after the
100th epoch, as needed for convergence.

Figure 4.14: WGAN training metrics

In addition to validating the Critic’s norm, it is expected that, under
the WGAN algorithm, the model distributes its weight to better utilize them.
This is shown in Figure 4.15 in comparison to Figure 4.16: although it did not
fully utilize its capacity (some weights are very close to zero), the weights are
distributed in a mostly smooth manner.

Another interesting visualization is the noise layer weight distribution,
displayed in Figure 4.17. The legend identifies the weights by their processing
order: the lowest the number, the closest it is to the input: the layer closest to
the input has a flatter distribution than the one run closer to the prediction.

In order to compare the deterministic and the probabilistic model, Figure
4.18 shows the same location as Figure 4.13. From the image, it is clear that,
not only the probabilistic model better forecasts the true data, it also captures

43

Figure 4.15: Untrained Critic’s
Weights Distribution

Figure 4.16: Critic’s Weights Distri-
bution

Figure 4.17: Distribution of Weights in the Noise Layers

the uncertainty of the horizon: the farther it is, the less certain they are. On
top of that, it seems better at capturing the hourly variation while having only
trained on 12-hourly increments.

Figure 4.19 showcases the speed scenarios for a specific location. While
the model has captured the intra-day pattern well, it does not follow the
original series as well as the benchmark.

Before presenting a consolidated view on results evaluation, Figure 4.20
displays the speed correlation of the model and benchmark, alongside the
true data. The rows contain the Partial Autocorrelation Function (ACF), the
correlation between all series and Land (Land-ACF) and the Ocean (Ocean-
ACF); while the columns showcase the true, proposed and benchmark values.
Overall, the model seems to have captured the series structure well, with
a stronger amplitude. On the other hand, the benchmark still captures the
dependency better - even if not well for the Land correlation.

To better provide an overall view of results, Figure 4.21 represents the
spatial average of CRPS over the prediction horizon (T), Equation 4-7. It starts

44

Figure 4.18: Scenarios Comparison

at zero (perfect prediction, since the zeroth step is the true data), and then
is the average of each step (i) over all months. The dashed lines represent the
overall average. It is interesting to note that, while the model’s predictions
worsen faster than NWP’s scenarios initially, its scenarios seem to stay close
by to the benchmark’s for many steps ahead.

CRPSi = 1
#h×#w

∑
h,w

CRPS(yh,w
i , ŷh,w

iS
) ∀i ∈ [1, T] , S ∈ N (4-7)

Finally, both models are evaluated. Table 4.3 provides the CRPS’ aver-
ages for each month of the test set. Since CRPS is a generalization of MAE,
this table can be compared to Table 4.2, showing that including uncertainty
improves performance.

Another perspective over these results comes from applying the Diebold-
Mariano’s test on each model’s forecasts medians. For each combination of
latitude and longitude, the amount of months when the null hypothesis is
accepted (for p-value greater or equal to 0.01) is counted. This is shown in
Table 4.4. Since the maximum value for each table entry is 12 (amount of
months in a year), it can be concluded that, for 71.97% of test series (593
out of 824 = h × w × months × components = 6 · 6 · 12 · 2), our proposal is
comparable to the current state-of-the-art.

In conclusion, the proposed methodology delivered similar results to the
state of the art, while depending on much less data and requiring much less
computational power. Although NWP’s forecasts showed better performance

45

Figure 4.19: Example of Generated Wind Scenarios

Speed Correlation
Reanalysis Model NWP

A
C

F
L

an
d-

A
C

F
O

ce
an

-A
C

F

Figure 4.20: Speed Correlation boxplot comparison

when comparing CRPS, it is statistically equal than our proposal for 71.97%
of the test series.

46

Figure 4.21: CRPS over step

Table 4.3: Average of CRPS for 28 steps (two weeks) for all test set months,
per component. Values in bold are the lowest per component.

Generator NWP
month u v u v
FEV 0.892 0.95 0.717 0.743
MAR 0.799 0.809 0.725 0.888
APR 0.901 0.868 0.752 0.695
MAY 0.797 1.039 0.679 0.982
JUN 0.648 0.836 0.65 0.745
JUL 0.768 1.432 0.646 1.023
AUG 0.642 0.828 0.69 0.874
SET 0.705 1.569 0.725 0.649
OCT 0.745 1.876 0.604 0.754
NOV 0.602 1.062 0.611 0.788
DEZ 0.613 1.004 0.607 0.867

Table 4.4: Amount of months when the Diebold-Mariano’s test null hypothesis
is accepted (p-value ≥ 0.01) for components u- and v-

longitude
latitude -39.0 -38.0 -37.0 -36.0 -35.0 -34.0 total
-4.0 (3, 8) (9, 11) (6, 8) (9, 5) (9, 9) (9, 9)
-5.0 (10, 11) (6, 11) (11, 8) (9, 7) (10, 8) (9, 9)
-6.0 (10, 9) (9, 10) (8, 8) (8, 5) (9, 6) (8, 6)
-7.0 (12, 6) (8, 9) (9, 5) (7, 9) (8, 5) (9, 7)
-8.0 (9, 9) (10, 10) (8, 9) (10, 10) (10, 5) (9, 5)
-9.0 (8, 12) (6, 9) (9, 10) (0, 8) (9, 7) (10, 7)
total 593

47

5
Conclusions

The variability of renewable energy sources intensify the grid operator’s
challenge of maintaining stability. Wind power, for example, can vary rapidly
due to changes in wind speed, making skillful forecasts progressively more
important - specially for the medium-term (few hours to a few days) [4, 5] and
if they include uncertainty [6, 7].

This need, aligned with: the high computational cost of Numerical
Weather Prediction (NWP) systems and recent developments in Deep Learning
(DL), opens space for new developments in the area [57, 58].

This work proposed a fully Convolutional Neural Network to generate
12-hourly wind speed scenarios. The model, estimated with consumer-grade
hardware, is compared with a state-of-the-art Numerical Weather Prediction
(NWP) system.

Having adjusted the data to the NWP time and spatial resolutions,
the proposed model showed better performance in some months of the test
data (6 out of 24), demonstrating long term stability and being statistically
indistinguishable to the state of the art in 71.97% months (593 out of 824). This
achievement is quite impressive, considering that the benchmark was produced
with data all around the globe while the model was limited by the chosen area.

In addition, the proposed methodology can be easily adapted to coarser
time steps and spatial grid, with little to no modification. Furthermore, the
trained scheme seemed to reduce the double loss problem, a common problem
when forecasting over a grid [9]. This problem is the result of a correct
prediction on the wrong location, which incentivises the model to blur its
predictions.

However, the GAN algorithm did not come without downsides. It was
very hard to stabilize the training process. Here are some relevant choices that
were made during the development that helped stabilize it:

– interpolating between MSE’s (similar to reconstruction loss) and GAN’s
loss was of utmost importance;

– slowly increasing the training horizon T (every 10 epochs), since both
model’s were able to slowly adapt, also improved forecasts;

– separating both components for the Critic reduced the amount of weights
and cross components interactions, allowing a bigger Critic to be trained;

– ensuring the 1-Lipschitz Critic’s property was extremely challenging,
specially since a diverging Critic would also make the Generator diverge,
entering a vicious cycle. This restriction was only achieved and kept with
spectral normalization [45]: using Gradient Penalty [44], on top of being
more expensive, always diverged after more training (around the 100th
epoch).

Beyond this work, a few suggestions can be made. From a modeling
perspective, future work could further explore wind’s time dependence -
possibly including steps further in the past. Moreover, considering that this
problem is translation and rotational variant, other backbone algorithms could
have been used, such as Graph Neural Networks, which are also more similar to
NWP’s current modeling. Finally, a similar venue is to directly map previous
wind speed to wind power output, since that’s what the grid operator’s
optimization model uses [22].

49

Bibliography

[1] G. Giebel, G. Kariniotakis, R. Brownsword, The state-of-the-art in short
term prediction of wind power from a danish perspective, in: 4th Inter-
national Workshop on large scale integration of wind power and trans-
mission networks for offshore wind farms, Billund, Denmark, 2003. URL:
https://minesparis-psl.hal.science/hal-00529986.

[2] D. Bouche, R. Flamary, F. d’Alché Buc, R. Plougonven, M. Clausel, J. Badosa,
P. Drobinski, Wind power predictions from nowcasts to 4-hour forecasts: A
learning approach with variable selection, Renewable Energy 211 (2023) 938–
947.

[3] P. M. Maçaira, F. L. C. Oliveira, P. G. C. Ferreira, F. V. N. de Almeida,
R. C. Souza, INTRODUCING a CAUSAL PAR(p) MODEL TO EVALUATE
THE INFLUENCE OF CLIMATE VARIABLES IN RESERVOIR INFLOWS: A
BRAZILIAN CASE, Pesquisa Operacional 37 (2017) 107–128.

[4] C. Möhrlen, R. J. Bessa, N. Fleischhut, A decision-making experiment under
wind power forecast uncertainty, Meteorological Applications 29 (2022)
e2077.

[5] B. P. Cotia, C. L. Borges, A. L. Diniz, Optimization of wind power generation
to minimize operation costs in the daily scheduling of hydrothermal systems,
International Journal of Electrical Power & Energy Systems 113 (2019) 539–
548.

[6] A. Tuohy, P. Meibom, E. Denny, M. O’Malley, Unit commitment for systems
with significant wind penetration, IEEE Transactions on Power Systems 24
(2009) 592–601.

[7] F. Bouffard, F. D. Galiana, Stochastic security for operations planning with
significant wind power generation, IEEE Transactions on Power Systems 23
(2008) 306–316.

[8] M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H.
Leufen, A. Mozaffari, S. Stadtler, Can deep learning beat numerical weather
prediction?, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 379 (2021) 20200097.

https://minesparis-psl.hal.science/hal-00529986

[9] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato,
F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer,
G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, P. Battaglia,
Learning skillful medium-range global weather forecasting, Science 382 (2023)
1416–1421.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet Large
Scale Visual Recognition Challenge, International Journal of Computer Vision
115 (2015) 211–252.

[11] B. Q. Bastos, F. L. Cyrino Oliveira, R. L. Milidiú, U-convolutional model for
spatio-temporal wind speed forecasting, International Journal of Forecasting
37 (2021) 949–970.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial networks, Communications of
the ACM 63 (2020) 139–144.

[13] M. Mirza, S. Osindero, Conditional generative adversarial nets, CoRR
abs/1411.1784 (2014).

[14] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan, 2017. URL: https:
//arxiv.org/abs/1701.07875. doi:10.48550/ARXIV.1701.07875.

[15] J. Gui, Z. Sun, Y. Wen, D. Tao, J. Ye, A Review on Generative Adversarial
Networks: Algorithms, Theory, and Applications, IEEE Transactions on
Knowledge and Data Engineering 35 (2023) 3313–3332.

[16] A. Helseth, A. C. G. Melo, Q. M. Ploussard, B. Mo, M. E. P. Maceira, A. Bot-
terud, N. Voisin, Hydropower scheduling toolchains: Comparing experiences
in brazil, norway, and USA and implications for synergistic research, Journal
of Water Resources Planning and Management 149 (2023).

[17] E. R. Office, Brazilian Energy Balance: summary report 2023 - reference year
2022, Report, Energy Research Office – Brazil, Esplanada dos Ministérios
- Bloco U. Ministério de Minas e Energia - Sala 744 - 7º andar, 70065-
900 Brasília – DF, 2023. URL: https://www.epe.gov.br/sites-pt/
publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/
publicacao-748/topico-687/BEN2023.pdf.

[18] M. E. P. Maceira, A. C. G. Melo, J. F. M. Pessanha, C. B. Cruz, V. A.
Almeida, T. C. Justino, Combining monthly wind and inflow uncertainties in
the stochastic dual dynamic programming, Energy Systems (2023).

51

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
http://dx.doi.org/10.48550/ARXIV.1701.07875
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-748/topico-687/BEN2023.pdf
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-748/topico-687/BEN2023.pdf
https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-748/topico-687/BEN2023.pdf

[19] CEPEL, Cepel, 2021. URL: https://www.cepel.br/wp-content/
uploads/2022/05/DECOMP%5FManualReferencia%5FOut2021.pdf, ac-
cessed at 2024/02/05 from https://www.cepel.br/produtos/documentacao-
tecnica/.

[20] A. Luiz Diniz, F. Da Serra Costa, M. Elvira Maceira, T. Norbiato dos Santos,
L. C. B. Dos Santos, R. Neves Cabral, Short/mid-term hydrothermal dispatch
and spot pricing for large-scale systems-the case of brazil, in: 2018 Power
Systems Computation Conference (PSCC), 2018, pp. 1–7. doi:10.23919/
PSCC.2018.8442897.

[21] T. S. Nielsen, A. Joensen, H. Madsen, L. Landberg, G. Giebel, A new reference
for wind power forecasting, Wind Energy 1 (1998) 29–34.

[22] G. G. et al., The state-of-the-art in short-term prediction of wind power a
literature overview, 2nd edition document type deliverable, 2011.

[23] E. Erdem, J. Shi, Arma based approaches for forecasting the tuple of wind
speed and direction, Applied Energy 88 (2011) 1405–1414.

[24] B. G. Brown, R. W. Katz, A. H. Murphy, Time series models to simulate
and forecast wind speed and wind power, Journal of Climate and Applied
Meteorology 23 (1984) 1184–1195.

[25] J. F. M. Pessanha, A. C. G. Melo, M. E. P. Maceira, V. Almeida, Gen-
eration of short-term wind power scenarios from an ensemble of hourly
wind speed forecasts, in: 2022 17th International Conference on Prob-
abilistic Methods Applied to Power Systems (PMAPS), 2022, pp. 1–6.
doi:10.1109/PMAPS53380.2022.9810569.

[26] Y. Liu, H. Qin, Z. Zhang, S. Pei, Z. Jiang, Z. Feng, J. Zhou, Probabilistic
spatiotemporal wind speed forecasting based on a variational bayesian deep
learning model, Applied Energy 260 (2020) 114259.

[27] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, 2015. arXiv:1505.04597.

[28] C. Jiang, Y. Mao, Y. Chai, M. Yu, S. Tao, Scenario Generation for Wind
Power Using Improved Generative Adversarial Networks, IEEE Access 6 (2018)
62193–62203.

[29] S. E. Haupt, P. A. Jiménez, J. A. Lee, B. Kosović, 1 - principles of meteorology
and numerical weather prediction, in: G. Kariniotakis (Ed.), Renewable En-
ergy Forecasting, Woodhead Publishing Series in Energy, Woodhead Publish-
ing, 2017, pp. 3–28. URL: https://www.sciencedirect.com/science/

52

https://www.cepel.br/wp-content/uploads/2022/05/DECOMP%5FManualReferencia%5FOut2021.pdf
https://www.cepel.br/wp-content/uploads/2022/05/DECOMP%5FManualReferencia%5FOut2021.pdf
http://dx.doi.org/10.23919/PSCC.2018.8442897
http://dx.doi.org/10.23919/PSCC.2018.8442897
http://dx.doi.org/10.1109/PMAPS53380.2022.9810569
http://arxiv.org/abs/1505.04597
https://www.sciencedirect.com/science/article/pii/B9780081005040000019
https://www.sciencedirect.com/science/article/pii/B9780081005040000019

article/pii/B9780081005040000019. doi:https://doi.org/10.1016/
B978-0-08-100504-0.00001-9.

[30] D. J. Stensrud, Parameterization schemes: Keys to understanding numerical
weather prediction models, Cambridge University Press, 2009.

[31] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators, Neural Networks 2 (1989) 359–366.

[32] S. Linnainmaa, The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors, 1970.

[33] D. P. Kingma, J. L. Ba, Adam: A method for stochastic optimization,
3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings (2015) 1–15.

[34] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, Journal of Machine Learning Research - Proceedings Track
9 (2010) 249–256.

[35] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors,
2012. arXiv:1207.0580.

[36] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning, 33rd International Conference on Machine
Learning, ICML 2016 3 (2016) 1651–1660.

[37] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2016-December (2016) 770–778.

[38] H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape
of neural nets, Advances in Neural Information Processing Systems 2018-
December (2018) 6389–6399.

[39] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86 (1998) 2278–2324.

[40] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for
improved quality, stability, and variation, CoRR abs/1710.10196 (2017).

[41] T. Karras, S. Laine, T. Aila, A style-based generator architecture for
generative adversarial networks, CoRR abs/1812.04948 (2018).

53

https://www.sciencedirect.com/science/article/pii/B9780081005040000019
https://www.sciencedirect.com/science/article/pii/B9780081005040000019
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-100504-0.00001-9
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-100504-0.00001-9
http://arxiv.org/abs/1207.0580

[42] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Analyzing
and improving the image quality of stylegan, CoRR abs/1912.04958 (2019).

[43] M. Lee, J. Seok, Regularization methods for generative adversarial networks:
An overview of recent studies, 2020. URL: https://arxiv.org/abs/2005.
09165. arXiv:2005.09165.

[44] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved
training of wasserstein GANs, Advances in Neural Information Processing
Systems 2017-Decem (2017) 5768–5778.

[45] T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for
generative adversarial networks, CoRR abs/1802.05957 (2018).

[46] J. A. Weyn, D. R. Durran, R. Caruana, Can machines learn to predict
weather? using deep learning to predict gridded 500-hpa geopotential height
from historical weather data, Journal of Advances in Modeling Earth Systems
11 (2019) 2680–2693.

[47] P. Manisha, D. Das, S. Gujar, Effect of input noise dimension in gans, CoRR
abs/2004.06882 (2020).

[48] A. Radford, L. Metz, S. Chintala, Unsupervised representation learn-
ing with deep convolutional generative adversarial networks, 2015.
arXiv:1511.06434.

[49] J. A. Weyn, D. R. Durran, R. Caruana, Improving data-driven global weather
prediction using deep convolutional neural networks on a cubed sphere,
Journal of Advances in Modeling Earth Systems 12 (2020).

[50] F. Diebold, R. Mariano, Comparing predictive accuracy, Journal of Business
& Economic Statistics 13 (1995) 253–63.

[51] R. J. Hyndman, Y. Khandakar, Automatic time series forecasting: the forecast
package for R, Journal of Statistical Software 27 (2008) 1–22.

[52] D. Harvey, S. Leybourne, P. Newbold, Testing the equality of prediction mean
squared errors, International Journal of Forecasting 13 (1997) 281–291.

[53] J. Muñoz Sabater, Era5-land hourly data from 1950 to present.,
2019. URL: https://cds.climate.copernicus.eu/cdsapp#!/dataset/
10.24381/cds.e2161bac?tab=overview. doi:10.24381/cds.e2161bac.

[54] C. D. S. Copernicus Climate Change Service, Seasonal forecast subdaily
data on pressure levels, 2018. URL: https://cds.climate.copernicus.

54

https://arxiv.org/abs/2005.09165
https://arxiv.org/abs/2005.09165
http://arxiv.org/abs/2005.09165
http://arxiv.org/abs/1511.06434
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
http://dx.doi.org/10.24381/cds.e2161bac
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=overview

eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=
overview. doi:10.24381/cds.50ed0a73.

[55] J. Olauson, ERA5: The new champion of wind power modelling?, Renewable
Energy 126 (2018) 322–331.

[56] S. C. de Aquino Ferreira, F. L. C. Oliveira, P. M. Maçaira, Validation of the
representativeness of wind speed time series obtained from reanalysis data for
brazilian territory, Energy 258 (2022) 124746.

[57] S. Lang, M. Alexe, M. Chantry, J. Dramsch, F. Pinault, B. Raoult, M. C. A.
Clare, C. Lessig, M. Maier-Gerber, L. Magnusson, Z. B. Bouallègue, A. P.
Nemesio, P. D. Dueben, A. Brown, F. Pappenberger, F. Rabier, Aifs -
ecmwf’s data-driven forecasting system, 2024. URL: https://arxiv.org/
abs/2406.01465. arXiv:2406.01465.

[58] A. McNally, C. Lessig, P. Lean, E. Boucher, M. Alexe, E. Pinnington,
M. Chantry, S. Lang, C. Burrows, M. Chrust, F. Pinault, E. Villeneuve,
N. Bormann, S. Healy, Data driven weather forecasts trained and initialised
directly from observations, 2024. URL: https://arxiv.org/abs/2407.
15586. arXiv:2407.15586.

[59] G. Van Rossum, F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts
Valley, CA, 2009.

[60] C. C. C. Service, Era5 hourly data on pressure levels from 1940 to present,
2018. URL: https://cds.climate.copernicus.eu/doi/10.24381/cds.
bd0915c6. doi:10.24381/CDS.BD0915C6.

[61] C. C. C. Service, Seasonal forecast subdaily data on pressure levels,
2018. URL: https://cds.climate.copernicus.eu/doi/10.24381/cds.
50ed0a73. doi:10.24381/CDS.50ED0A73.

[62] S. Hoyer, H. Joseph, xarray: N-D labeled Arrays and Datasets in Python,
Journal of Open Research Software 5 (2017).

[63] Dask Development Team, Dask: Library for dynamic task scheduling, 2016.
URL: https://dask.org.

[64] W. McKinney, Data structures for statistical computing in python, in:
S. van der Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science
Conference, Proceedings of the Python in Science Conference, SciPy, 2010,
pp. 56–61. doi:10.25080/Majora-92bf1922-00a.

55

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-pressure-levels?tab=overview
http://dx.doi.org/10.24381/cds.50ed0a73
https://arxiv.org/abs/2406.01465
https://arxiv.org/abs/2406.01465
http://arxiv.org/abs/2406.01465
https://arxiv.org/abs/2407.15586
https://arxiv.org/abs/2407.15586
http://arxiv.org/abs/2407.15586
https://cds.climate.copernicus.eu/doi/10.24381/cds.bd0915c6
https://cds.climate.copernicus.eu/doi/10.24381/cds.bd0915c6
http://dx.doi.org/10.24381/CDS.BD0915C6
https://cds.climate.copernicus.eu/doi/10.24381/cds.50ed0a73
https://cds.climate.copernicus.eu/doi/10.24381/cds.50ed0a73
http://dx.doi.org/10.24381/CDS.50ED0A73
https://dask.org
http://dx.doi.org/10.25080/Majora-92bf1922-00a

[65] M. L. Waskom, seaborn: statistical data visualization, Journal of Open Source
Software 6 (2021) 3021.

[66] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science
& Engineering 9 (2007) 90–95.

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12 (2011) 2825–
2830.

[68] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao,
P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable,
A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind,
B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano,
Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso,
M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang,
W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu,
S. Chintala, PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation, in: 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24), ACM, 2024. URL: https://
pytorch.org/assets/pytorch2-2.pdf. doi:10.1145/3620665.3640366.

[69] W. Falcon, The PyTorch Lightning team, PyTorch Lightning, 2019. URL:
https://github.com/Lightning-AI/lightning. doi:10.5281/zenodo.
3828935.

[70] B. Leon, H. Stephan, K. Alex, O. Drew, properscoring, https://github.
com/properscoring/properscoring, 2015.

56

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
http://dx.doi.org/10.1145/3620665.3640366
https://github.com/Lightning-AI/lightning
http://dx.doi.org/10.5281/zenodo.3828935
http://dx.doi.org/10.5281/zenodo.3828935
https://github.com/properscoring/properscoring
https://github.com/properscoring/properscoring

6
Appendix A. Supplementary Material

Supplementary material (code, tables and visualizations) to this work is
available online at github.com/felipewhitaker/windscenarios.

The authors thank the Python programming language [59] and other
important projects, listed below alongside what it was used for:

– Data Download was done through the CDSAPI, with specific citations
for each dataset: Reanalysis [60] and Forecast [61];

– Data Interface was done using xarray [62], using dask [63] for heavy
workflows and pandas [64] for easy manipulations;

– Visualizations were created using seaborn [65], with some manipula-
tions done with matplotlib [66];

– Although all preprocessing was done with xarray [62], sklearn’s [67]
structure was used;

– The model was developed using Pytorch [68], and training engineer-
ing abstractions done by Pytorch Lightning [69]; and

– properscoring’s CRPS implementation [70] was used for evaluation

Finally, the computer configuration - all consumer-grade components - is
stated below:

Processor (CPU) AMD Ryzen 5 5600G with Radeon Graphics, 3.90 GHz
Graphics Processing Unit (GPU) NVIDIA GeForce RTX 3060 12GB
Installed RAM 64.0 GB (63.9 GB usable)
System type 64-bit operating system, x64-based processor

https://github.com/felipewhitaker/windscenarios

	Short term Wind Speed Scenario Generation for Brazil with Improved Generative Adversarial Networks
	Resumo
	Table of contents
	Introduction
	Literature Review
	Numerical Weather Prediction
	Deep Learning
	Background
	Generative Adversarial Networks

	Methodology
	Data Normalization
	Models
	Deterministic
	Date time Encoder
	Training

	Stochastic
	Noise
	Critic
	Training

	Benchmark
	Evaluation
	Mean Absolute Error
	Continuous Ranked Probability Score
	Diebold-Mariano test

	Case Study
	Gathering Data
	Adjustments
	General Characteristics
	Time Patterns
	Spatial Patterns

	Results
	Deterministic Model
	Stochastic Model

	Conclusions
	Appendix A. Supplementary Material

